Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(15): 10574-10579, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567326

ABSTRACT

We report the decomposition of the Pt1Ag24(SPhCl2)18 nanocluster into a crown-like Pt1Ag4(SR)8 (SR = 2,4-SPhCl2 and 4-SPhBr) complex. UV-vis spectra and single crystal X-ray diffraction were used to track the structure-conversion process. Based on the total structure, the differences in ligand exchange rates at different sites and the effects on the stability were mapped out. This work can not only help us understand the ligand exchange behavior of the clusters, but also provide experimental support for the design of stable metal clusters.

2.
Nanoscale ; 16(18): 9047-9054, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38634772

ABSTRACT

Photothermal conversion has garnered significant attention due to its potential for efficient energy conversion and application in targeted therapies. However, controlling photothermal properties at the atomic level remains a challenge in current materials synthesis. In this study, we report the synthesis and structural determination of a phosphine and mercaptan co-protected Au5Ag12(SR)9(dppf)4 (Au5Ag12) nanocluster with an extremely low quantum yield (∼0%). For comparative purposes, we synthesized three alloy nanoclusters of similar size. Notably, Au5Ag12 demonstrates a remarkably superior photothermal conversion performance, significantly outperforming the other clusters. We investigated this variance from both absorption and emission perspectives. This research not only opens new avenues for the application of clusters with extremely low quantum yields, but also provides experimental evidence for understanding the photothermal conversion properties of cluster materials at the atomic level.

3.
FASEB J ; 38(5): e23525, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430373

ABSTRACT

CD3+ CD56+ NKT-like cells are crucial to antitumor immune surveillance and defense. However, research on circulating NKT-like cells in colorectal cancer (CRC) patients is limited. This investigation selected 113 patients diagnosed with primary CRC for preoperative peripheral blood collection. The blood from 106 healthy donors at the physical examination center was acquired as a healthy control (HC). The distribution of lymphocyte subsets, immunophenotype, and functional characteristics of NKT-like cells was comprehensively evaluated. Compared to HC, primary CRC patients had considerably fewer peripheral NKT-like cells in frequency and absolute quantity, and the fraction of NKT-like cells was further reduced in patients with vascular invasion compared to those without. The NKT-like cells in CRC patients had a reduced fraction of the activating receptor CD16, up-regulated expression of inhibitory receptors LAG-3 and NKG2A, impaired production of TNF-α and IFN-γ, as well as degranulation capacity. Moreover, the increased frequency of NKG2A+ NKT-like cells and the decreased expression of activation-related molecules were significantly correlated with tumor progression. In detail, NKG2A+ NKT-like cells indicated increased PD-1 and Tim-3 and reduced TNF-α than NKG2A- subgroup. Blocking NKG2A in vitro restored cytokine secretion capacity in NKT-like cells from CRC patients. Altogether, this research revealed that circulating NKT-like cells in CRC patients exhibited suppressive phenotype and functional impairment, which was more pronounced in NKG2A+ NKT-like cells. These findings suggest that NKG2A blockade may restore anti-tumor effector function in NKT-like cells, which provides a potential target for immunotherapy in CRC patients.


Subject(s)
Colorectal Neoplasms , Natural Killer T-Cells , Humans , Killer Cells, Natural , Tumor Necrosis Factor-alpha/metabolism , Phenotype , Colorectal Neoplasms/pathology
4.
Chem Commun (Camb) ; 60(23): 3162-3165, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38407303

ABSTRACT

Advancing catalyst design requires meticulous control of nanocatalyst selectivity at the atomic level. Here, we synthesized two Pd1Ag14 nanoclusters: Pd1Ag14(PPh3)8(SPh(CF3)2)6 and Pd1Ag14(P(Ph-p-OMe)3)7(SPh)6, each with well-defined structures. Notably, in Pd1Ag14(P(Ph-p-OMe)3)7(SPh)6, the detachment of a phosphine ligand from the top silver atom facilitates the exposure of singular active sites. This exposure significantly enhances its selectivity for the electrocatalytic reduction of CO2 to CO, achieving a Faraday efficiency of 83.3% at -1.3 V, markedly surpassing the 28.1% performance at -1.2 V of Pd1Ag14(PPh3)8(SPh(CF3)2)6. This work underscores the impact of atomic-level structural manipulation on enhancing nanocatalyst performance.

5.
Nanoscale Adv ; 5(12): 3287-3292, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37325530

ABSTRACT

Atomically precise metal nanoclusters (NCs) have emerged as a new class of ultrasmall nanoparticles with both free valence electrons and precise structures (from the metal core to the organic ligand shell) and provide great opportunities to understand the relationship between their structures and properties, such as electrocatalytic CO2 reduction reaction (eCO2RR) performance, at the atomic level. Herein, we report the synthesis and the overall structure of the phosphine and iodine co-protected Au4(PPh3)4I2 (Au4) NC, which is the smallest multinuclear Au superatom with two free e- reported so far. Single-crystal X-ray diffraction reveals a tetrahedral Au4 core stabilized by four phosphines and two iodides. Interestingly, the Au4 NC exhibits much higher catalytic selectivity for CO (FECO: > 60%) at more positive potentials (from -0.6 to -0.7 V vs. RHE) than Au11(PPh3)7I3 (FECO: < 60%), a larger 8 e- superatom, and Au(i)PPh3Cl complex; whereas the hydrogen evolution reaction (HER) dominates the electrocatalysis when the potential becomes more negative (FEH2 of Au4 = 85.8% at -1.2 V vs. RHE). Structural and electronic analyses reveal that the Au4 tetrahedron becomes unstable at more negative reduction potentials, resulting in decomposition and aggregation, and consequently the decay in catalytic performance of Au based catalysts towards the eCO2RR.

6.
J Phys Chem Lett ; 14(22): 5095-5101, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37234017

ABSTRACT

Chirality has risen as an attractive topic in materials research in recent years, but the attainment of enantiopure materials remains a major challenge. Herein, we obtained homochiral nanoclusters by a recrystallization strategy, without any chiral factors (i.e., chiral ligands, counterions, etc.). Through the rapid flipping of configuration of silver nanoclusters in solution, the initial racemic Ag40 (triclinic) nanoclusters are converted to homochiral (orthorhombic) as revealed by X-ray crystallography. In the seeded crystallization, one homochiral Ag40 crystal is used as a seed to direct the growth of crystals with specific chirality. Furthermore, enantiopure Ag40 nanoclusters can be used as amplifiers for the detection of chiral carboxylic drugs. This work not only provides chiral conversion and amplification strategies to obtain homochiral nanoclusters but also explains the chirality origin of nanoclusters at the molecular level.

7.
Int J Med Sci ; 20(5): 652-662, 2023.
Article in English | MEDLINE | ID: mdl-37082729

ABSTRACT

Type 2 diabetes mellitus (T2DM) is associated with increased incidence and mortality of many cancers and infectious diseases. CD3+CD56+ NKT-like cells play pivotal roles in tumor surveillance and infection control. However, little is known about potential alterations in circulating NKT-like cells in T2DM patients. In this study, we found that the frequency and absolute counts of circulating NKT-like cells were significantly lower in patients with T2DM compared to healthy volunteers. Moreover, in T2DM patients, NKT-like cells were impaired in their production of IFN-γ and TNF-α as well as degranulation capacity. The expression of activating receptor NKG2D was markedly decreased on NKT-like cells in T2DM patients, while the expression of inhibitory receptors Tim-3 and LAG-3 was upregulated. In detail, Tim-3+NKT-like cells expressed higher LAG-3 and less IFN-γ and TNF-α compared to Tim-3-NKT-like cells. Importantly, we further found that the expression of Tim-3 in NKT-like cells from T2DM patients correlated positively with glycated hemoglobin (HbA1c) and fasting blood glucose (FBG) levels, as well as with diabetes duration. In conclusion, these results indicate that NKT-like cells from T2DM patients display an exhausted phenotype and reduced functionality. Moreover, Tim-3 expression on NKT-like cells likely serves a novel biomarker for duration of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Natural Killer T-Cells , Humans , Tumor Necrosis Factor-alpha/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Diabetes Mellitus, Type 2/pathology , Natural Killer T-Cells/metabolism , Natural Killer T-Cells/pathology , Interferon-gamma/metabolism
8.
Phys Chem Chem Phys ; 25(14): 9772-9778, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36946196

ABSTRACT

Nanocluster photoluminescence (PL) has important practical applications and its rationalization is therefore of significant interest. Here, we report the synthesis, structure determination and photoluminescence of Au10Ag17(TPP)10(SR)6Cl5 (TPP = triphenylphosphine, SR = 3, 5-bis(trifluoromethyl)thiophenol, denoted as Au10Ag17). Au10Ag17 exhibited a low photoluminescence quantum yield (PLQY) of 2.8%, which could be increased 15-fold by removing the two terminal silver atoms to give AgxAu25-x(SR)5(TPP)10Cl22+ (x = 11-13, SR = 2-phenylethylmercaptan, abbrev. Au12Ag13). The discovery of such a PL switch constitutes an interesting opportunity to further understand the origin of fluorescence in nanoclusters.

9.
Angew Chem Int Ed Engl ; 60(33): 17969-17973, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34125983

ABSTRACT

Bimetallic core-shell nanostructures hold great promise in elucidating the bimetallic synergism. However, it remains a challenge to construct atomically precise core-shell with high-valence active metals on the gold surface. In this work, we report the total structure of a [Au42 Cd40 (SR)52 ]2- core-shell nanocluster and multiple implications. Single crystal X-ray diffraction (SCXRD) reveals that the structure possesses a two-shelled Au6 @Au36 core and a closed cadmium shell of Cd40 , and the core-shell structure is then protected by 52 thiolate (-SR) ligands. The composition of the nanocluster is further confirmed by electrospray ionization mass spectrometry (ESI-MS). A catalytic test for styrene oxidation and a comparison with relevant nanoclusters reveal the surface effect on the catalytic activity and selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...